0 Daumen
13 Aufrufe

Aufgabenstellung:

Zwei Autos bewegen sich auf einer geraden Strecke zwischen den Punkten A und B, die 3,5 km voneinander entfernt sind. Die Autos fahren aufeinander zu, jedoch unter unterschiedlichen Bedingungen:

1. Auto 1 (von A nach B):
• Startposition: Punkt A
• Bewegung: Das Auto beschleunigt mit einer konstanten Beschleunigung
• Beschleunigung: 3 m/s^2
• Anfangsgeschwindigkeit: 0km/h (startet aus dem Stillstand)
2. Auto 2 (von B nach A):
• Startposition: Punkt B, 3,5 km (3500 m) von A entfernt
• Bewegung: Das Auto bremst mit einer konstanten Verzögerung
• Anfangsgeschwindigkeit: 200km/h
• Bremsverzögerung: 0,1 m/s^s

Gesuchte Größen

1. Zeitpunkt des Treffens: Wann treffen sich beide Autos? Berechne die Zeit, zu der die Positionen beider Autos übereinstimmen.

Ansatz:

Ich habe die Werte in die Bewegungsgleichung eingesetzt und anschließend gleichgesetzt:

Bewegungsgleichung:
s(t) = 1/2 * a * t^2 + V0 * t + S0

Ich erhalte als Zeit ständig 71,9 s. Laut Lösungsbuch ist es jedoch falsch…

Avatar vor von

1 Antwort

0 Daumen

Ich komme bei gleichem Ansatz auf ca. 68,7s. Vielleicht hast du dich nur verrechnet. Was soll denn herauskommen?

Avatar vor von 4,4 k

Dein Ergebnis ist korrekt.

Wie sehen eigentlich deine Kurven im s-t-Diagramm aus? Insbesondere interessiert mich die Kurve für die Verzögerung, wenn das Fahrzeug 3500 m zurückfährt. Bei mir erscheinen beide Kurven als nach oben geöffnete „halbe“ Parabeln.

Dein Ergebnis ist korrekt.

Steht im Lösungsheft tatsächlich auch 68,7 s ?

Wenn der von dir angegebene Aufgabentext richtig ist bzw. ich ihn richtig interpretiere, können Ansatz und Ergebnis nicht richtig sein. Wieso setzt du die Strecken und nicht die Zeit gleich, wenn sich die Autos aufeinander zu bewegen? Sie legen doch in der gleichen Zeit unterschiedlich große Strecken zurück.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community