Antwort mit KI erzeugt
Aufgabe 1:
a) Berechnung der während eines Arbeitszyklus abgegebenen Arbeit
Gegeben sind:
- Hubvolumen \( V = 132 \, \text{cm}^3 = 132 \times 10^{-6} \, \text{m}^3 \) (umgerechnet in Kubikmeter)
- Mittlerer Arbeitsdruck \( p = 25 \, \text{bar} = 25 \times 10^5 \, \text{Pa} \) (umgerechnet in Pascal)
Die Arbeit \( W \) bei einem Druckprozess kann berechnet werden durch:
\( W = p \times V \)
Also:
\( W = 25 \times 10^5 \, \text{Pa} \times 132 \times 10^{-6} \, \text{m}^3 = 3300 \, \text{J} \)
b) Leistung des Einzylinder-Motors bei 4000 Umdrehungen pro Minute
- Drehzahl \( n = 4000 \, \text{Umdrehungen pro Minute} = 4000 / 60 \, \text{s}^{-1} = 66.67 \, \text{s}^{-1} \)
- Für einen 4-Takt-Motor ist für einen vollen Zyklus eine Doppelumdrehung nötig, also \( n_{\text{Zyklus}} = n / 2 \)
Arbeit pro Zyklus wurde bereits als \( 3300 \, \text{J} \) berechnet.
Leistung \( P \) des Motors wird berechnet durch:
\( P = W \times n_{\text{Zyklus}} = 3300 \, \text{J} \times 33.33 \, \text{s}^{-1} = 110000 \, \text{J/s} = 110 \, \text{kW} \)
c) Benzinverbrauch pro Stunde mit einem Wirkungsgrad von 35%
Um den Benzinverbrauch zu berechnen, müssen wir zuerst die insgesamt benötigte Energie für eine Stunde bestimmen.
Leistung \( P = 110 \, \text{kW} = 110 \times 10^3 \, \text{J/s} \)
Energie pro Stunde \( E_{\text{Stunde}} = P \times 3600 \, \text{s} \)
\( E_{\text{Stunde}} = 110 \times 10^3 \, \text{J/s} \times 3600 \, \text{s} = 396 \times 10^6 \, \text{J} \)
Mit einem Wirkungsgrad von 35%, ist die Energie, die von Benzin kommt:
\( E_{\text{Benzin}} = E_{\text{Stunde}} / 0.35 \)
\( E_{\text{Benzin}} = 396 \times 10^6 \, \text{J} / 0.35 \approx 1131.43 \times 10^6 \, \text{J} \)
Mit einem Heizwert von \( 4.3 \times 10^7 \, \text{J/kg} \), ist der Benzinverbrauch:
\( \text{Verbrauch} = E_{\text{Benzin}} / \text{Heizwert} \)
\( \text{Verbrauch} \approx 1131.43 \times 10^6 \, \text{J} / (4.3 \times 10^7 \, \text{J/kg}) \approx 26.31 \, \text{kg} \)
Aufgabe 2:
a) Leistung des Motors
Gegeben sind:
- Hubvolumen \( V = 250 \, \text{cm}^3 = 250 \times 10^{-6} \, \text{m}^3 \)
- Mittlerer Arbeitsdruck \( p = 4.5 \, \text{bar} = 4.5 \times 10^5 \, \text{Pa} \)
- Drehzahl \( n_{\text{Dreh}} = 52 \, \text{s}^{-1} \)
Die Arbeit pro Zyklus ist:
\( W = p \times V = 4.5 \times 10^5 \, \text{Pa} \times 250 \times 10^{-6} \, \text{m}^3 = 112.5 \, \text{J} \)
Da es sich um einen 4-Takt-Motor handelt:
\( n = n_{\text{Dreh}} / 2 = 26 \, \text{s}^{-1} \)
Die Leistung \( P \) ist:
\( P = W \times n = 112.5 \, \text{J} \times 26 \, \text{s}^{-1} = 2925 \, \text{J/s} = 2.925 \, \text{kW} \)
b) Benzinverbrauch in einer halben Stunde
Energie pro halbe Stunde \( E_{\text{halbe Stunde}} = P \times 1800 \, \text{s} \)
\( E_{\text{halbe Stunde}} = 2.925 \, \text{kW} \times 1800 \, \text{s} = 5.265 \times 10^6 \, \text{J} \)
Mit einem Wirkungsgrad von 25%:
\( E_{\text{Benzin}} = E_{\text{halbe Stunde}} / 0.25 = 5.265 \times 10^6 \, \text{J} / 0.25 = 21.06 \times 10^6 \, \text{J} \)
Benzinverbrauch:
\( \text{Verbrauch} = E_{\text{Benzin}} / \text{Heizwert} = 21.06 \times 10^6 \, \text{J} / (4.3 \times 10^7 \, \text{J/kg}) \approx 0.49 \, \text{kg} \)
Aufgabe 3:
a) An der Kurbelwelle verrichtete Arbeit
Für 20 Liter Benzin, mit einem Heizwert von \( 4.3 \times 10^7 \, \text{J/kg} \) und einer Dichte \( \rho \) von Benzin ca. 0.75 kg/L:
\( Masse = 20 \, \text{L} \times 0.75 \, \text{kg/L} = 15 \, \text{kg} \)
Gesamtenergie:
\( E_{\text{gesamt}} = 15 \, \text{kg} \times 4.3 \times 10^7 \, \text{J/kg} = 645 \times 10^6 \, \text{J} \)
Mit einem Wirkungsgrad von 25% ist die an der Kurbelwelle verrichtete Arbeit:
\( E_{\text{Kurbelwelle}} = E_{\text{gesamt}} \times 0.25 = 645 \times 10^6 \, \text{J} \times 0.25 = 161.25 \times 10^6 \, \text{J} \)
b) Genutzte Arbeit
Wenn 40% der Arbeit „verloren“ gehen, wird effektiv genutzt:
\( E_{\text{effektiv}} = E_{\text{Kurbelwelle}} \times (1 - 0.4) = 161.25 \times 10^6 \, \text{J} \times 0.6 = 96.75 \times 10^6 \, \text{J} \)
c) Prozentanteil der Verbrennungsenergie, der die Umwelt durch Temperaturerhöhung belastet
Dieser Anteil entspricht dem Anteil, der nicht in Arbeit umgesetzt wurde:
\( E_{\text{umwelt}} = E_{\text{gesamt}} - E_{\text{Kurbelwelle}} \)
\( E_{\text{umwelt}} = 645 \times 10^6 \, \text{J} - 161.25 \times 10^6 \, \text{J} = 483.75 \times 10^6 \, \text{J} \)
Prozentual bezogen auf die Gesamtenergie:
\( \text{\% Umwelt} = (E_{\text{umwelt}} / E_{\text{gesamt}}) \times 100 \)
\( \text{\% Umwelt} = (483.75 \times 10^6 \, \text{J} / 645 \times 10^6 \, \text{J}) \times 100 \approx 75\% \)