Aufgabe:
Die folgende Differentialgleichung beschreibe einen gedämpften harmonischen Oszillator:
\( x^{\prime \prime}(t)+a x^{\prime}(t)+3 x(t)=0 \)
Für welchen Wert von \( a \) liegt der aperiodische Grenzfall vor?
Betrachten Sie die allgemeine Lösung \( x_{\text {allg }}(t) \) aus der vorherigen Übung (der aperiodische Grenzfall). Weichen Wert muss \( x^{\prime}(0) \) haben, damit \( x(0)=1 \) und \( x(1)=\frac{1}{2} \) gilt?
Runden Sie nicht das Ergebnis aus der vorherigen Ubungsfrage.
Problem/Ansatz:
Ich weiß ungefähr, dass ein aperiodischer Grenzfall eine Situation ist, in der die Schwingung keinen Richtungswechsel vollführt und nur weniger wird. Aber woher soll ich dann wissen, welchen Wert die Dämpfung a hier annehmen können soll?