Aufgabe:
(a) Zeigen Sie, dass eine Ellipse, deren Mittelpunkt im Koordinatenursprung liegt, in Polarkoordinaten \( (r, \varphi) \) durch die Gleichung
\( r^{2}=\frac{\frac{2 a^{2} b^{2}}{a^{2}+b^{2}}}{1-\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \cos (2 \varphi)} \)
beschrieben wird. Hierbei bezeichnet \( a \) die grobe Halbachse und \( b \) die kleine Halbachse. Die Darstellung in kartesischen Koordinaten,
\( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \)
ist als bekannt vorauszusetzen.
(b) Zeigen Sie, dass die Orbits bei der Bewegung im dreidimensionalen Oszillatorpotential
\( U(r)=\frac{k}{2} r^{2}, \quad k>0 \)
Ellipsen sind, deren Mittelpunkt im Koordinatenursprung liegt.
Hinweis zu (b): Bei der Integration der Orbitgleichung ist die Substitution \( r=u^{-1 / 2} \) hilfreich.
Kann mir jemand sagen, wie man das löst?