Antwort mit KI erzeugt
1) Die Autoelektrik bei großen LKWs
a) Kraft auf ein 5m langes Starthilfekabel im Erdmagnetfeld
Um die Kraft \(F\) auf ein 5m langes Starthilfekabel im Erdmagnetfeld zu berechnen, verwenden wir die Formel \(F = i \cdot l \cdot B\), wobei \(i\) der Strom, \(l\) die Länge des Kabels und \(B\) die Stärke des magnetischen Feldes ist.
Gegeben sind:
- \(i = 400 A\),
- \(l = 5 m\),
- \(B = 10^{-4} T\) (Tesla, umgerechnet von Vsm\(^2\), da \(1 T = 1 Vs/m^2) \).
Einsetzen der Werte ergibt:
\(F = 400 A \cdot 5 m \cdot 10^{-4} T = 2 N\)
Es scheint einen Fehler in der Berechnung in der Frage geben: Das korrekte Ergebnis ist \(2\,N\) (Newton), nicht \(0.16\,N\).
b) Stromstärke für ein Magnetfeld von einem Tesla
Um die Stromstärke \(i\) für ein Magnetfeld von einem Tesla zu berechnen, wenn das Kabel um eine Eisenstange zu einer Spule gewickelt wird, nutzen wir die Formel \(B = \mu_0 \cdot \mu_r \cdot n \cdot i / l\), wobei \(B\) das Magnetfeld, \(\mu_0\) die magnetische Feldkonstante (\(4 \pi \cdot 10^{-7}\,N/A^2\)), \(\mu_r\) die relative Permeabilität, \(n\) die Anzahl der Windungen und \(l\) die Länge der Spule sind.
Gegeben sind:
- \(B = 1\,T\),
- \(\mu_0 = 4 \pi \cdot 10^{-7}\,N/A^2\),
- \(\mu_r = 15\),
- Gesamtlänge des Kabels \(= 10\,m\),
- Länge der Spule \(= 0.5\,m\),
- Durchmesser der Spule \(= 0.1\,m\), somit der Umfang \(u = \pi \cdot d = \pi \cdot 0.1\,m\).
Zuerst berechnen wir \(n\):
\(n = \frac{10\,m}{\pi \cdot 0.1\,m} = \frac{10}{\pi \cdot 0.1} \approx 31.83,\)
gerundet \(32\) Windungen.
Nun lösen wir die Gleichung \(B = \mu_0 \cdot \mu_r \cdot i \cdot n / l\) nach \(i\) auf:
\(i = \frac{B \cdot l}{\mu_0 \cdot \mu_r \cdot n}.\)
Einsetzen der Werte ergibt:
\(i = \frac{1\,T \cdot 0.5\,m}{4 \pi \cdot 10^{-7}\,N/A^2 \cdot 15 \cdot 32} \approx \frac{1 \cdot 0.5}{4 \pi \cdot 10^{-7} \cdot 15 \cdot 32}. \)
Ein Fehler scheint in der Nutzung von \(12.57 \times 10^{-7}\,N/A^2\) anstelle von \(4 \pi \cdot 10^{-7}\,N/A^2\) vorzuliegen. Die korrekte Konstante ist \(\mu_0 = 4 \pi \cdot 10^{-7}\,N/A^2\). Korrigieren wir dies:
\(i \approx \frac{0.5}{4 \pi \cdot 10^{-7} \cdot 15 \cdot 32} \approx \frac{0.5}{60 \pi \cdot 10^{-7}} \approx 2652.58\,A.\)
Es scheint also eine Verrechnung bezüglich des Wertes für \(i\) zu geben. Die Berechnung zeigt einen anderen Wert aufgrund korrekter Einsetzung von \(\mu_0\) und Berechnung.
2) Beschleunigende Spannung für Elektronen in einer Fernsehrohre
Um die beschleunigende Spannung \(U\) zu finden, die Elektronen auf \(1000\,km/s\) beschleunigt, nutzen wir die Formel \(U \cdot Q = \frac{1}{2} \cdot m \cdot v^2\), wobei \(Q\) die Ladung des Elektrons und \(m\) seine Masse darstellen.
Gegeben sind:
- \(v = 1000\,km/s = 1 \times 10^6\,m/s\),
- \(m = 9.109 \times 10^{-31}\,kg\),
- \(Q = 1.602 \times 10^{-19}\,C\).
Einsetzen in die Formel liefert:
\(U = \frac{0.5 \cdot (9.109 \times 10^{-31} \cdot (1 \times 10^6)^2)}{1.602 \times 10^{-19}}.\)
Rechnen wir dies aus, erhalten wir:
\(U = \frac{0.5 \cdot 9.109 \times 10^{-31} \cdot 10^{12}}{1.602 \times 10^{-19}}.\)
Um die Rechnung zu vervollständigen:
\(U = \frac{4.5545 \times 10^{-18}}{1.602 \times 10^{-19}} = \frac{4.5545}{1.602}\,V = 2.843 \times 10^{3}\,V = 2843\,V.\)
Die Berechnung in der Frage ergab fälschlicherweise \(0.000003V\), was nicht richtig ist. Die korrekte Spannung, um Elektronen auf \(1000\,km/s\) zu beschleunigen, beträgt \(2843\,V\).