Antwort mit KI erzeugt
Gegebene Aufgabe 1: Magnetfeld einer Spule
Für die Berechnung des Magnetfeldes \(B\) eines langen, stromdurchflossenen Kabels, das zu einer Spule aufgewickelt ist, verwendet man die Formel:
\(B = \mu_0 \cdot \frac{I \cdot n}{l}\)
wobei:
- \(B\) das Magnetfeld ist,
- \(\mu_0 = 4\pi \times 10^{-7} \, \text{Vs/Am}\) die magnetische Feldkonstante,
- \(I\) die Stromstärke,
- \(n\) die Anzahl der Windungen je Längeneinheit, und
- \(l\) die Länge durch die die Windungen verteilt sind.
Für die Berechnung der Windungsanzahl \(n\) wird \(\pi d = u\) benutzt, wobei \(d\) der Durchmesser der Spule ist und \(u\) den Umfang einer einzelnen Windung beschreibt. Dies wird gemacht, um herauszufinden, wie lang eine einzelne Windung der Spule ist, weil die 2000 m Kabel auf die Trommel gewickelt eine kontinuierliche Spule bilden.
Mit einem Durchmesser von 3 m ergibt sich der Umfang \(u\) durch:
\(u = \pi d = \pi \cdot 3 \, \text{m} = 9,43 \, \text{m}\)
Dann berechnet sich die Gesamtanzahl der Windungen \(n\) durch die Division der Gesamtlänge des Kabels durch die Länge einer einzelnen Windung:
\(n = \frac{2000 \, \text{m}}{9,43 \, \text{m}} = 212\)
Setzt man dies mit der doppelten Stromstärke (\(I = 97\,A \cdot 2\)) in die ursprüngliche Gleichung ein, erhält man:
\(B = 4\pi \times 10^{-7} \, \text{Vs/Am} \cdot \frac{(97\,A \cdot 2) \cdot 212}{2\,m} = 2,54 \times 10^{-3} \, \text{T}\) (T für Tesla, Magnetfeldstärke).
Gegebene Aufgabe 2: Beschleunigung von Elektronen
Die Energie eines Elektrons, das durch ein Potential \(U\) beschleunigt wird, ist gegeben durch:
\(U \cdot Q = \frac{1}{2} m \cdot v^2\)
Diese Formel folgt aus dem Energieerhaltungssatz, wobei die elektrische Energie \(U \cdot Q\) (Produkt aus Beschleunigungsspannung \(U\) und Ladung \(Q\)) in kinetische Energie \(\frac{1}{2} m \cdot v^2\) umgewandelt wird.
Um \(v\) zu berechnen, formen wir die Gleichung um:
\(v = \sqrt{\frac{2UQ}{m}}\)
Mit \(Q = 1,6 \times 10^{-19}\,C\) (Ladung eines Elektrons), \(m = 9,109 \times 10^{-31}\,kg\) (Masse eines Elektrons) und \(U = 250\,V\), folgt:
\(v = \sqrt{\frac{2 \cdot 250 \cdot 1,6 \times 10^{-19}}{9,109 \times 10^{-31}}} \approx 9,37 \times 10^{6} \, \text{m/s}\)
Die Geschwindigkeit wird in \(\text{m/s}\) angegeben, da die Einheiten Volt, Coulomb und Kilogramm in die Basiseinheiten für Beschleunigung (m/s²) und Kraft (Newton) umgerechnet werden, was zu einer Geschwindigkeitseinheit führt.
Gegebene Aufgabe 3: Kraft aufgrund eines Magnetfelds
Die gegebene Aufgabe bezieht sich auf die Lorentzkraft, die auf einen stromdurchflossenen Leiter in einem Magnetfeld wirkt:
\(F = I \cdot l \cdot B\)
Mit \(I=30000\,A\), \(l=12\,m\), und \(B=10^{-4}\,\text{Vs/m}^2\),
\(F = 30000\,A \cdot 12\,m \cdot 10^{-4}\,\text{Vs/m}^2 = 36\,N\)
Die Einheit \(A \cdot (\text{Vs/m}^2) = N\), da Ampere mal Volt pro Quadratmeter gleich Newton ist, was aus der Definition der Magnetflussdichte (\(B\)) und der Lorentzkraft (\(F\)) hervorgeht.