0 Daumen
670 Aufrufe

Aufgabe:

Eine Spule mit n= 100 Windungen und der Länge l=0.5m ist in Ost-West-Richtung ausgerichtet. Führt sie Strom mit l=130mA, wird eine Magnetnadel in ihrem Innern um alpha=60° aus der Nordrichtung gedreht. B (Erde, h) sei der Betrag der Horizontalkomponente des Erdmagnetfeldes.

Zeigen Sie, dass für den Ablenkungswinkel alpha der Magnetnadel tan alpha = B (Spule)/B (Erde, h) gilt und berechnen Sie B (Erde, h).

Avatar von

1 Antwort

0 Daumen

Antwort mit KI erzeugt

Berechnung des Magnetfeldes der Erde basierend auf der Ablenkung einer Magnetnadel

Um zu zeigen, dass für den Ablenkungswinkel \(\alpha\) der Magnetnadel \(\tan \alpha = \frac{B(\text{Spule})}{B(\text{Erde, h})}\) gilt, betrachten wir, dass die resultierende magnetische Feldstärke in der Spule aus zwei Komponenten zusammengesetzt ist: dem Erdmagnetfeld \(B(\text{Erde, h})\) und dem von der Spule erzeugten Magnetfeld \(B(\text{Spule})\).

Die Horizontalkomponente des Erdmagnetfeldes wirkt in Nord-Süd-Richtung, während das Magnetfeld der Spule, wenn sie in Ost-West-Richtung orientiert ist, in dieser Achse wirkt und somit orthogonal zum Erdmagnetfeld steht.

Die Gesamtmagnetfeldstärke \(\vec{B}_{\text{ges}}\) in der Spule ist die Vektorsumme aus \(B(\text{Erde, h})\) und \(B(\text{Spule})\). Diese setzt sich zusammen zu:
\( \vec{B}_{\text{ges}} = B(\text{Erde, h}) \hat{i} + B(\text{Spule}) \hat{j} \)
mit \(\hat{i}\) und \(\hat{j}\) als Einheitsvektoren in Ost-West- bzw. Nord-Süd-Richtung.

Der Ablenkungswinkel \(\alpha\), den die Magnetnadel aufgrund des Gesamtfelds zeigt, bildet sich durch das Verhältnis der Spulenfeldkomponente zur Erdmagnetfeldkomponente. Deshalb gilt für den Tangens des Ablenkungswinkels:
\( \tan \alpha = \frac{B(\text{Spule})}{B(\text{Erde, h})} \)

Berechnung des Magnetfeldes der Spule \(B(\text{Spule})\):

Das Magnetfeld einer Spule kann mit der Formel \(\mu_0 \frac{N I}{l}\) berechnet werden, wobei \(\mu_0\) die magnetische Feldkonstante (\(4 \pi \times 10^{-7}\) N/A²), \(N\) die Anzahl der Windungen, \(I\) der Strom in Ampere und \(l\) die Länge der Spule ist.

Gegeben sind:
- \(N = 100\) Windungen,
- \(I = 130\) mA \(= 0.130\) A,
- \(l = 0.5\) m.

Einsetzen der Werte liefert:
\( B(\text{Spule}) = 4\pi \times 10^{-7} \frac{N \times I}{l} = 4\pi \times 10^{-7} \frac{100 \times 0.130}{0.5} \approx 1.03 \times 10^{-5} \text{ T} \)

Lösung der Gleichung für \(B(\text{Erde, h})\):

Mit \(\tan \alpha = \frac{B(\text{Spule})}{B(\text{Erde, h})}\) und \(\alpha = 60°\), folgt:
\( \tan 60° = \frac{1.03 \times 10^{-5} \text{ T}}{B(\text{Erde, h})} \)

\(\tan 60° = \sqrt{3}\), also:
\( \sqrt{3} = \frac{1.03 \times 10^{-5} \text{ T}}{B(\text{Erde, h})} \)

Umstellen dieser Gleichung gibt:
\( B(\text{Erde, h}) = \frac{1.03 \times 10^{-5} \text{ T}}{\sqrt{3}} = \frac{1.03 \times 10^{-5}}{\sqrt{3}} \approx 5.95 \times 10^{-6} \text{ T} \)

Somit beträgt die Horizontalkomponente des Erdmagnetfeldes \(B(\text{Erde, h}) \approx 5.95 \times 10^{-6} \text{ Tesla}\).
Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community