Text erkannt:
\( \begin{array}{l}z_{1}=\frac{d}{m_{1}}\left|\cdot \ln 1 \quad z \quad i=\frac{z_{2}}{z_{1}}\right| \cdot z_{1} \\ \text { tr.mnde } \\ \text { 1) }-3,5 \mathrm{~mm} 263 \mathrm{~mm}=d_{1} \\ 1_{1}-z_{1} \geq z_{2} \\ i=\frac{720 \min ^{-1}}{16 \min ^{-1}}=45 \\ 4,5-15=81 \\ i_{3}=i_{1} \cdot i_{i_{2}}-i_{3} \\ i_{3}=\frac{i}{i_{1} \cdot i_{2}}=\frac{45}{4,5 \cdot 3,6}=2,78 \\ i_{4}=\frac{i}{i_{1} \cdot i_{2} \cdot i_{3}}=\frac{45}{4,6 \cdot 3,6-2,74}=1,03 \\ i_{s}=\frac{i}{i_{1} \cdot i_{2} \cdot i_{3} \cdot t_{h}}=\frac{45}{4,5 \cdot 3,6 \cdot 2,78 \cdot 1,03}=1 \\ i_{6}=\frac{7}{i 1 \cdot 12 \cdot i 3-i 4 \cdot i x}=\frac{45}{4,5 \cdot 3,6 \cdot 2,78 \cdot 1 \cdot 1 \cdot 1}=1 \\ i_{3} \cdot z_{3}=z_{4}=2,78 \cdot 20=854 \\ \text { i4 } z_{4}=z 5=1,03 \cdot 54=55,62 \\ \text { i5. } z_{5}=6<1 \cdot 55,62=55,62 \\ z_{2}=\frac{d_{2}}{m_{2}} \\ \frac{z_{2}}{z_{2}} \cdot m_{2}=d_{2}=81 \cdot 3,6=219,6 \mathrm{~m}=d_{2} \\ z_{3}=\frac{d_{3}}{m_{3}} \\ z_{3 \cdot m_{3}}=d_{3}=54 \cdot 2,7 \mathrm{~m}=145,8 \mathrm{~mm}=d_{3} \\ d_{1} \frac{d_{1}+d_{2}}{2}=\frac{63 \mathrm{~mm}+219,6 \mathrm{~mm}}{2}=141,3 \\ a d_{2}=\frac{d_{2}^{2}+d_{3}}{2}=\frac{219,6 m^{2}+45145,8 \mathrm{~m}}{2}=182,7 \\\end{array} \)
Schaut das gut aus ?
Nein ich studiere nicht mache mein fachabitur