Antwort mit KI erzeugt
Lösung der Aufgabe
Um die gestellten Fragen zu beantworten, gehen wir schrittweise durch die Physik hinter den Vorgängen.
a) Aufsprunggeschwindigkeit auf der schiefen Ebene
Um die Aufsprunggeschwindigkeit auf der schiefen Ebene zu bestimmen, müssen wir zuerst den Winkel der schiefen Ebene berechnen. Die Höhe \((h)\) der schiefen Ebene beträgt 0,8 m und ihre Länge \((l)\) 3 m. Mit diesen Maßen können wir den Winkel \(\theta\) zum Horizontalen bestimmen, indem wir das Verhältnis von Gegenkathete zu Hypotenuse im rechtwinkligen Dreieck nutzen:
\(
\sin(\theta) = \frac{h}{l} = \frac{0,8m}{3m} = \frac{4}{15}
\)
Für kleine Winkel, bei denen \(\sin(\theta) \approx \theta\) in Radiant, wäre dies eine Näherung, aber es ist hier besser, den tatsächlichen Winkel zu berechnen, um genau zu bleiben, was wir mittels eines Taschenrechners oder einer mathematischen Software tun können, was uns einen Winkel \(\theta\) gibt, den wir für die folgenden Berechnungen nutzen werden.
Die ursprüngliche Geschwindigkeit der Skateboarderin in waagrechter Richtung beträgt 4,5 m/s. Diese Geschwindigkeit muss nun in eine Komponente entlang der schiefen Ebene zerlegt werden. Da die Bewegung entlang der schiefen Ebene eine Projektion der horizontalen Geschwindigkeit auf die Ebene darstellt, gilt:
\(
v_{\text{Ebene}} = v \cdot \cos(\theta)
\)
Da \(\cos(\theta) = \frac{adjazent}{hypotenuse} = \frac{\sqrt{3^2 - 0.8^2}}{3}\), lässt sich \(v_{\text{Ebene}}\) nun direkt berechnen:
\(
v_{\text{Ebene}} = 4.5 \cdot \cos(\theta)
\)
b) Anzahl der Umdrehungen der Skateboardrollen
Um die Anzahl der Umdrehungen zu berechnen, benötigen wir zuerst die zurückgelegte Strecke der Rollen, welche 3 m beträgt, und den Umfang \(U\) einer Rolle:
\(
U = \pi \cdot d = \pi \cdot 5,2cm = \pi \cdot 0,052m
\)
Die Anzahl der Umdrehungen \(N\) ergibt sich aus der Division der zurückgelegten Strecke durch den Umfang einer Rolle:
\(
N = \frac{\text{Strecke}}{U} = \frac{3}{\pi \cdot 0,052}
\)
c) Fehler durch Vernachlässigung der Rollreibung
Der auf die Masse wirkende Anteil der Gewichtskraft entlang der schiefen Ebene ergibt sich aus \(G_{\text{entlang}} = m \cdot g \cdot \sin(\theta)\). Die Beschleunigung durch den Hangabtrieb ist daher \(a = g \cdot \sin(\theta)\).
Die Rollreibung wirkt dieser Beschleunigung entgegen. Die Rollreibungskraft \(F_{\text{Roll}}\) ist definiert durch \(F_{\text{Roll}} = \mu_{\text{Roll}} \cdot G_{\text{normal}} = \mu_{\text{Roll}} \cdot m \cdot g \cdot \cos(\theta)\). Die resultierende Beschleunigung unter Berücksichtigung der Rollreibung ist daher kleiner als die Hangabtriebsbeschleunigung.
Der relative Fehler \(F_{r}\) ergibt sich aus dem Verhältnis der durch die Rollreibung vernachlässigten Beschleunigung zur gesamten Hangabtriebsbeschleunigung:
\(
F_{r} = \frac{a_{\text{Roll}}}{a_{\text{Hang}}} = \frac{\mu_{\text{Roll}} \cdot g \cdot \cos(\theta)}{g \cdot \sin(\theta)} = \mu_{\text{Roll}} \cdot \frac{\cos(\theta)}{\sin(\theta)}
\)
Indem man alle erforderlichen Werte einsetzt, kann man den relavtiven Fehler berechnen. Beachten Sie, dass die Ergebnisse abhängig von der Genauigkeit Ihrer Winkelberechnungen leicht variieren könnten.