Text erkannt:
5. (5P)
Die Gleichung
\( w(x, t)=\cos \left[2 \pi \nu\left(t-\frac{x}{c}\right)\right] \)
beschreibt eine ebene, in x-Richtung fortschreitende Welle. Dabei ist \( w(x, t) \) die Auslenkung, z.B. einer Wasseroberfläche zur Zeit \( t \) am Ort \( x . \nu \) und \( c \) sind feste positive Zahlen der Dimension s \( { }^{-1} \) bzw. \( \mathrm{m} \mathrm{s}^{-1} \).
Beachten Sie für diese Aufgabe auch den Link "Tipps zu Wellen" im Learnweb.
(a) Skizzieren Sie \( w \) als Funktion der Zeit für \( x=0 \). Wie groß ist die Anzahl der Schwingungen pro Sekunde? Wie groß ist daher die Periode der Schwingung?
Aufgabe: Cosinusfunktion zeichnen/ Frequenz berechnen
Problem/Ansatz
Ich komme einfach nicht drauf, wie man die Frequenz berechnet ohne vorgebende Werte…Danke
Text erkannt:
5. (5P)
Die Gleichung
\( w(x, t)=\cos \left[2 \pi \nu\left(t-\frac{x}{c}\right)\right] \)
beschreibt eine ebene, in x-Richtung fortschreitende Welle. Dabei ist \( w(x, t) \) die Auslenkung, z.B. einer Wasseroberfläche zur Zeit \( t \) am Ort \( x . \nu \) und \( c \) sind feste positive Zahlen der Dimension s \( { }^{-1} \) bzw. \( \mathrm{m} \mathrm{s}^{-1} \).
Beachten Sie für diese Aufgabe auch den Link "Tipps zu Wellen" im Learnweb.
(a) Skizzieren Sie \( w \) als Funktion der Zeit für \( x=0 \). Wie groß ist die Anzahl der Schwingungen pro Sekunde? Wie groß ist daher die Periode der Schwingung?