Aufgabe (Fluchtgeschwindigkeit von der Erde \( \star \star \) ):
Für eine interplanetare Raumfahrtmission muss eine Rakete beim Start von der Erdoberfläche so schnell sein, dass sie das Schwerkraftfeld überwinden kann. Die minimale Startgeschwindigkeit zur Überwindung des Gravitationsfeldes der Erde heißt Fluchtgeschwindigkeit.
(a) Geben Sie eine Formel für die potentielle Energie der Rakete beim Start an (ausgedrückt durch die Gravitationskonstante \( G \), Erdmasse \( M \), Erdradius \( R \) und Raketenmasse \( m \) ).
(b) Beim Start mit Fluchtgeschwindigkeit hat die Rakete weit weg von der Erde näherungsweise keine kinetische und keine potentielle Energie mehr. Zeigen Sie mit Hilfe der Energieerhaltung, dass die Fluchtgeschwindigkeit durch
\( v_{\mathrm{F}}=\sqrt{\frac{2 G M}{R}} \)
gegeben ist. Berechnen Sie die Fluchtgeschwindigkeit von der Erde! [Angaben: \( G=6,67 \cdot 10^{-11} \mathrm{~m}^{3} \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2}, M=5,98 \cdot 10^{24} \mathrm{~kg}, R=6370 \mathrm{~km} \).]
Kurzlösungen:
(a) \( E_{\mathrm{pot}}=-G M m / R \)
(b) In diesem Beispiel ist die Energieerhaltung \( E_{\text {kin }}+E_{\text {pot }}=0 \) (warum Null?). Einsetzen der Formel für die kinetische Energie und der potentiellen Energie aus (a) führt auf eine Gleichung, die Sie nach \( v \) auflösen müssen. Ergebnis: \( v_{\mathrm{F}}=11,2 \mathrm{~km} / \mathrm{s} \).