Antwort mit KI erzeugt
Volumenarbeit berechnen
Teil (a): Volumenarbeit bei Expansion gegen konstanten äußeren Druck
Die Volumenarbeit \(W\) bei isothermer Expansion gegen einen konstanten äußeren Druck \(p_{\text{ex}}\) kann mit der folgenden Formel berechnet werden:
\(
W = -p_{\text{ex}} \Delta V
\)
wobei:
- \(W\) ist die Arbeit, die vom System verrichtet wird (in Joule, J).
- \(p_{\text{ex}}\) ist der konstante äußere Druck (in Pascal, Pa, aber gegeben in kPa in der Aufgabe, also wir müssen es zu Pa umrechnen: \(1 \text{ kPa} = 1000 \text{ Pa}\)).
- \(\Delta V\) ist die Volumenzunahme (in Kubikmeter, m³, aber gegeben in dm³ in der Aufgabe, also wir müssen es zu m³ umrechnen: \(1 \text{ dm}³ = 0.001 \text{ m}³\)).
Gegeben ist:
- \(p_{\text{ex}} = 30.0 \text{ kPa} = 30000 \text{ Pa}\)
- \(\Delta V = 3.30 \text{ dm}³ = 0.0033 \text{ m}³\)
Nun setzen wir die Werte ein und berechnen die Arbeit:
\(
W = -30000 \text{ Pa} \times 0.0033 \text{ m}³ = -99 \text{ J}
\)
Die Volumenarbeit, die bei der Expansion verrichtet wird, beträgt \(-99 \text{ J}\). Das negative Vorzeichen deutet darauf hin, dass die Arbeit vom System (dem Gas) verrichtet wird.
Teil (b): Arbeit bei isotherm und reversibler Expansion
Für eine isotherme und reversible Expansion kann die Arbeit \(W_{\text{rev}}\) mithilfe der Ideal Gasgleichung und der Integration berechnet werden:
\(
W_{\text{rev}} = -nRT \ln{\left(\frac{V_2}{V_1}\right)}
\)
Dabei ist:
- \(n\) die Stoffmenge des Gases (in mol).
- \(R\) die allgemeine Gaskonstante (\(8.314 \, \text{J/(mol·K)}\)).
- \(T\) die Temperatur (in Kelvin).
- \(V_1\) und \(V_2\) sind das Anfangs- und das Endvolumen des Gases (beides in Kubikmeter).
Zuerst bestimmen wir die Stoffmenge \(n\) von CH4:
\(
n = \frac{m}{M} = \frac{4.50 \, \text{g}}{16.04 \, \text{g/mol}} \approx 0.2805 \, \text{mol}
\)
wobei \(m = 4.50 \, \text{g}\) die Masse des Methans und \(M = 16.04 \, \text{g/mol}\) die molare Masse von Methan ist.
Das Anfangsvolumen \(V_1 = 12.7 \text{ dm}³ = 0.0127 \text{ m}³\) und das Endvolumen \(V_2 = V_1 + \Delta V = 12.7 \text{ dm}³ + 3.30 \text{ dm}³ = 16.0 \text{ dm}³ = 0.0160 \text{ m}³\).
Nun berechnen wir die Arbeit:
\(
W_{\text{rev}} = -0.2805 \, \text{mol} \times 8.314 \, \text{J/(mol·K)} \times 310 \, \text{K} \times \ln{\left(\frac{0.0160}{0.0127}\right)}
\)
\(
W_{\text{rev}} \approx -0.2805 \times 8.314 \times 310 \times \ln{\left(1.2598\right)}
\)
\(
W_{\text{rev}} \approx -718.13 \times \ln{(1.2598)} \approx -718.13 \times 0.2310 \approx -165.88 \, \text{J}
\)
Die Arbeit, die während der isothermen und reversiblen Expansion verrichtet wird, beträgt etwa \(-165.88 \, \text{J}\). Auch hier zeigt das negative Vorzeichen, dass die Arbeit vom System verrichtet wird.