Hallo Marie,
Ich gehe mal davon aus, dass sich die Läuferin den Hang aufwärts bewegt und nur ihre Rollschuhe im Wechsel und kurzzeitig zur Seite - bzw. unter 24°. Bei 5° Steigung ergibt sich ein $$F_h = G \cdot \sin 5°$$wenn \(G\) das Gewicht der Läuferin ist. Beim Ausrollen wird die Läuferin die Rollschuhe sicher hangaufwärts stellen. Dann beträgt die Reibkraft$$F_r = 0,1 \cdot G \cdot \cos 5°$$zumal ein Reibkoeffizient von 0,1 relativ hoch ist, da wird sicher noch der Luftwiderstand enthalten sein. ich gehe also davon aus, dass die Reibung nur in Richtung der Bewegung der Läuferin, aber nicht ausschließlich bei den Rollschuhen wirkt.
MIt der Information 0,65s für das Ausrollen und \(v=4\text{m/s}\) Endgeschwindigkeit kann man nun die Gleichung für die Geschwindigkeit aufstellen - es sei $$v_{\text{end}} = v_{\max} - b \cdot 0,65 \text s = 4 \frac{\text m}{\text s}$$und \(b\) ist die Brensbeschleunigung mit $$\begin{aligned} b &= \frac{F_h + F_r}{m} = \frac{G \cdot \sin 5° + G \cdot 0,1 \cdot \cos 5°}{m} = (\sin 5° + 0,1\cdot \cos 5°)\, g \\ &\approx 0,187\, g\end{aligned}$$wie üblich geht man von einer konstanten Beschleunigung aus. Um während der Beschleunigungsphase auf die Geschwindigkeit \(v_{\max}\) zu kommen, muss sie mit \(a\) beschleunigen:$$v_{\max} = v_{\text{anf}} + a \cdot 0,35\text s \\ \implies a = \frac{0,65}{0,35} b = \frac{13}7 b$$Die Gesamtkraft \(F_{a}\), die sie dafür aufbringen muss ist $$\begin{aligned}F_a &= a \cdot m + F_h + F_r \\&= \frac {13}7 (F_h + F_r) + F_h+F_r \\&= \frac{20}7(F_h + F_r) \\&= \frac{20}7(\sin 5° + 0,1\cdot \cos 5°)\, G \\&\approx 0,534\, G\end{aligned}$$Wie Du siehst habe ich den Wnkel von 24° nicht verwendet, da ich die Reibung nur hangaufwärts angenommen habe. IMHO käme ansonsten auch ein viel zu hoher Wert für die Leistung heraus!
Die Leistung \(P_a\) während der Beschleunigungsphase ist $$ P_a(t) = F_a \cdot v = F_a \cdot (v_{\text{anf}} + a \cdot t)$$man kommt für \(t=0\) und \(m=70\text{kg}\) bereits auf einen Wert von $$P_a(t)_{70} \approx 1,47 \text{kW}$$das ist schon sehr viel.
Kommst Du mit dem Rest alleine klar? Für die mittlere Leistung musst Du die Leistung \(P_a(t)\) über die Zeit von \(t=0\) bis \(t=0,35\) integrieren und das Ergebnis durch die Summe der beiden Zeiten - also \(\Delta t=1\text s\) wieder dividieren.
Nachtrag:
ich habe nochmal drüber nachgedacht. Mal angenommen, die Reibkraft soll doch gegen die Bewegung der Rollschuhe wirken. Dann ergibt sich auf der geneigten Ebene folgendes Bild:
Die (Reib-)Kraft \(F_r\), die die Läuferin in Richtung ihrer Bewegung (hier im Bild senkrecht nach oben) bremst, kann man aufteilen in eine Kraft \(F_r^*\) in Richtung des Rollschuhs und eine Kraft senkrecht dazu. Dann ist $$F_r = \frac{F_r^*}{\cos 24°}= \frac{0,1 \cdot \cos 5°}{\cos 24°}\, G$$Die Bremsbeschleunigung \(b\) ist wie oben:$$\begin{aligned} b &= \frac{F_h + F_r}{m} \\&= (\sin 5° + \frac{0,1 \cdot \cos 5°}{\cos 24°} )\,g \\&\approx 0,196 \,g\end{aligned}$$und auch der Rest der Rechnung ist wie oben, nur das \(F_r\) um den Faktor \(1/\cos24°\) größer wird. Also ist:$$\begin{aligned}F_a &= \frac {20}7 (\sin 5° + \frac{0,1 \cdot \cos 5°}{\cos 24°})\,G \\&\approx 0,561\,G \end{aligned}$$usw. wie oben beschrieben.
Falls Du noch Fragen hast, so melde Dich bitte.
Gruß Werner