$$ \int \frac { 1 }{ { c }_{ 0 } *t+{ c }_{ 1 }}dt $$
Substituiere $$ { c }_{ 0 } *t { +c }_{ 1 }=z$$
$$dt=dz/{ c }_{ 0 }$$
--->
$$ \int \frac { 1 }{ { c }_{ 0 } *t+{ c }_{ 1 }}dt =\frac { 1 }{ { c }_{ 0 } } \int \frac { 1 }{ z }dz=\frac { 1 }{ { c }_{ 0 }}*ln(z)+{ c}_{ 2 }´=\frac { 1 }{ { c }_{ 0 }}*ln({ c }_{ 0 } *t { +c }_{ 1 })+{ c}_{ 2 }´=\frac { 1 }{ { c }_{ 0 }}*ln({ c }_{ 0 } *t { +c }_{ 1 })-ln({ c}_{ 2 })=\frac { 1 }{ { c }_{ 0 }}*ln(\frac { { c }_{ 0 } *t { +c }_{ 1 } }{ { c }_{ 2 } })$$