Antwort mit KI erzeugt
Gültigkeit des Satz von Stokes zeigen
Zuallererst, um die Gültigkeit des Satzes von Stokes anzuwenden, müssen wir verstehen, worum es bei dem Satz geht. Der Satz von Stokes besagt, dass das Linienintegral eines Vektorfeldes \( \mathbf{F} \) über den Rand einer Fläche \( S \) gleich dem Flächenintegral der Rotation von \( \mathbf{F} \) über \( S \) ist, d.h.,
\(
\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \int_S \nabla \times \mathbf{F} \cdot d\mathbf{S}
\)
In diesem speziellen Fall haben wir \( \mathbf{F} = (-y^3z, x^3z, z^4) \) und das Quadrat \( Q = \{(x,y,z) \in \mathbb{R}^3: [xy] \leq 1, z = 1\} \).
1. Berechnung der Rotation \(\mathbf{\nabla \times F}\)
Um die Rotation von \( \mathbf{F} \) zu berechnen, wenden wir die Definition an:
\(
\nabla \times \mathbf{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^3z & x^3z & z^4 \end{vmatrix}
\)
Daraus folgt:
\(
\nabla \times \mathbf{F} = \left( \frac{\partial z^4}{\partial y} - \frac{\partial (x^3z)}{\partial z}, \frac{\partial(-y^3z)}{\partial z} - \frac{\partial z^4}{\partial x}, \frac{\partial (x^3z)}{\partial y} - \frac{\partial(-y^3z)}{\partial x} \right)
\)
\(
\nabla \times \mathbf{F} = (0 - x^3, -y^3 - 0, 0 - 0) = (-x^3, -y^3, 0)
\)
2. Definition des Normalenvektors
Da die Fläche \( S \) bei \( z = 1 \) liegt und horizontal zur \( x,y \)-Ebene ist, ist der Normalenvektor konstant und zeigt in die \( z \)-Richtung, d.h., \( \hat{n} = (0, 0, 1) \).
3. Flächenintegral der Rotation von \( \mathbf{F} \) über \( S \)
Das Flächenintegral wird dann:
\(
\int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_S (-x^3, -y^3, 0) \cdot (0, 0, 1) \, dA
\)
Da der dritte Vektor der Rotation \( (0,0,0) \) ist und der Normalenvektor \( (0,0,1) \) ist, ist das Produkt immer 0. Deshalb ist das Flächenintegral der Rotation von \( \mathbf{F} \) über \( S \) gleich 0.
4. Wahl der Grenzen
Für das Quadrat \( Q \) mit der Bedingung \( [xy] \leq 1 \) und \( z = 1 \), ist der Bereich in der \( x,y \)-Ebene definiert als eine Fläche, für die das Produkt \( x \cdot y \) maximal 1 beträgt. Da dies ein allgemeiner Hinweis auf die Gestaltung der Fläche \( S \) bezogen auf \( x \) und \( y \) gibt, kann das explizite Auswählen der Grenzen ohne eine klare Definition des Bereichs herausfordernd sein. Typischerweise würde man erwarten, dass die Grenzen für \( x \) und \( y \) von den geometrischen Begrenzungen des Quadrats \( Q \) abhängig sind. Wenn zum Beispiel \( Q \) die Einheitsfläche umfasst, wären die Grenzen für \( \int \int \) von -1 bis 1 für beide \( x \) und \( y \), vorausgesetzt \( xy \leq 1 \). Jedoch, ohne weitere Informationen, bleibt dieser Punkt unklar.
Zusammenfassung
Da die Rotation von \( \mathbf{F} \) im dreidimensionalen Raum keinen Beitrag in Richtung des Normalenvektors der definierten Fläche \( S \) zum Flächenintegral liefert, folgt aus dem Satz von Stokes, dass das Linienintegral von \( \mathbf{F} \) entlang \( \partial S \) ebenfalls 0 sein muss. Die spezifischen Grenzen und die vollständige Anwendung des Satzes von Stokes in diesem Kontext hängen von der weiteren Klärung der geometrischen Beschreibung des Quadrats \( Q \) ab.