0 Daumen
739 Aufrufe

Hallo,

zu folgender Physik-Aufgabe habe ich keinen Lösungsansatz. Ich weiß nicht, wie ich was genau gleichsetzen soll, um auf die Lösung zu kommen. Eine Idee von mir ist, dass die Querschnittsfläche von dem kürzeren Dragt doppelt so groß sein muss wie die vom längeren Draht, damit die Masse beider Drähte gleich bleibt. spezifischer WIderstand (Kupfer) beider ist ja auch gleich.

Aber was setze ich dann später gleich, um auf R zu kommen? Ich muss mit der Gleichung R=spez.Widerstand • l /A rechnen. Ist das richtig?

Aufgabe:Gegeben sind zwei Kupferdrähte gleicher Masse mit kreisförmigen Querschnitten. Draht A ist doppelt so lang wie Draht B. Wie verhalten sich die Widerstände der Drähte zueinander (unter Vernachlässigung von Temperatureffekten)?


Vielen Dank im Voraus

Avatar von

2 Antworten

+1 Daumen

V1 = V2

(1/2·A)·(2·l) = A·l


R1 / R2 = ρ·(2·l)/(1/2·A) / (ρ·l/A) = 4


Draht A hat einen 4 mal so hohen Widerstand wie Draht B.

Avatar von 10 k
0 Daumen

Aufgabe:Gegeben sind zwei Kupferdrähte gleicher Masse mit kreisförmigen Querschnitten. Draht A ist doppelt so lang wie Draht B. Wie verhalten sich die Widerstände der Drähte zueinander (unter Vernachlässigung von Temperatureffekten)?

Masse_1 = Masse_2  =>
Volumen_1 = Volumen_2
a1 * l1 * a2 * l2

a1 * l1 = a2 * ( l1 / 2 )

2 * a1 = a2

Widerstand_1 = spez.Widerstand * l1 / a^1
Widerstand_2 = spez.Widerstand * ( l1 / 2 )  / ( 2 * a^1 )
Widerstand_2 = spez.Widerstand * ( l1 / ( 4 *  a^1 )
Widerstand _1 / Widerstand_2 =  1 / 4

Avatar von 7,2 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community