Antwort mit KI erzeugt
Geschwindigkeit der Alphateilchen
Um die Geschwindigkeit der beiden Alphateilchen zu bestimmen, die beim Zerfall des Berylliumkerns (vermutlich gemeint ist \(_4^8\)Be) entstehen, gehen wir von folgenden Annahmen aus: Der Zerfall erfolgt in zwei Alphateilchen (\(_2^4\)He), und die gesamte beim Zerfall freigesetzte Energie (1,5 \(\times 10^{-14}\) J) verwandelt sich in kinetische Energie der beiden Alphateilchen. Da der Anfangsimpuls des Systems 0 ist (Berylliumkern in Ruhe), und der Impulserhaltungssatz gilt, müssen die beiden Alphateilchen nach dem Zerfall gleiche und entgegengesetzte Impulse haben, was bedeutet, dass sie auch die gleiche Geschwindigkeit haben, wenn man von ihrem identischen Massen ausgeht.
Die Summe der kinetischen Energien beider Alphateilchen ist gleich der beim Zerfall freigesetzten Energie:
\(E_{total} = E_{k1} + E_{k2}\)
Da \(E_{k1} = E_{k2}\) weil \(v_1 = v_2\) und die Massen der Alphateilchen identisch sind, kann man schreiben:
\(E_{total} = 2E_k \)
Dabei ist \(E_k = \frac{1}{2}mv^2\) die kinetische Energie eines Teilchens, mit \(m\) als Masse eines Alphateilchens (die Masse von Helium-4, also ca. 6,64 \(\times 10^{-27}\) kg, und nicht 6,68 \(\times 10^{-27}\) kg, wie im Frageansatz fehlerhaft angegeben) und \(v\) als ihre Geschwindigkeit. Wir setzen die gegebene Energie ins Verhältnis:
\(1,5 \times 10^{-14} J = 2 \times \frac{1}{2} m v^2\)
\(1,5 \times 10^{-14} J = m v^2\)
Setzen wir die bekannten Werte ein, um \(v\) zu berechnen:
\(1,5 \times 10^{-14} J = (6,64 \times 10^{-27} kg) \cdot v^2\)
Lösen wir die Gleichung nach \(v\) auf:
\(v = \sqrt{\frac{1,5 \times 10^{-14} J}{6,64 \times 10^{-27} kg}}\)
\(v \approx \sqrt{2,26 \times 10^{12} \frac{m^2}{s^2}}\)
\(v \approx 1,5 \times 10^6 \frac{m}{s}\)
Die Geschwindigkeit der beiden Alphateilchen beträgt also etwa \(1,5 \times 10^6 \frac{m}{s}\).