Die Bewegung eines Massenpunktes werde durch die folgende Funktion beschrieben:
x(t) = a + b * t^3 Die Konstanten sind a = 5 m und b = 3 m/s^3. Berechnen Sie die
Geschwindigkeit des Massenpunktes zum Zeitpunkt t = 5s indem Sie
a) den Differenzenquotienten berechnen, wobei Sie die Zeitintervalle Δt=1s, Δt= 0,1s
und Δt=0,01s verwenden
b) die Funktion ableiten und den Wert von dx / dt zum o.g. Zeitpunkt berechnen.
a) limt→∞ [(5m + (3m/s^3)*t^3) -(5m+(3m/s^3) *125 s^3)] / (t-5) oder durch Δt=1s ?
d/dt *(a+b*t^3) = d/dt * (5m + 3 m/s^3 *t^3) = 9t^2
f'(5) = 225 [?]
Ist x(t) gleich die Geschwindigkeit?