meine Antwort ist nicht ganz korrekt. Den Sprung habe ich simuliert und in kleinen Schritten nachvollzogen. Dann wurde klar, dass als Gleichgewichtslage die Stelle gemeint ist, an der die Beschleunigung 0 ist; potentielle -, kinetische - und Federenergie sind da sehr unterschiedlich. Bei h3 ist die Differenz der potentiellen Energie in Federenergie umgewandelt. Damit kann die Federlänge ermittelt werden.
Epot(1-3)=EFeder
m·g·(115m-2,5m)=1/2·D·s2
s=25,373 m
s hatten wir bisher nicht als Größe, das ist die Federlänge des Seils, das Seil ist selbst 115m-2,5m-s=87,127 m lang. Über diese Strecke findet auch der freie Fall statt. Dann wirkt das Seil als Feder. Wenn die Federkraft die Gewichstkraft erreicht, ist die Beschleunigung 0. Die Gewichtskraft ist m·g; die Federkraft ist D·Δs. Damit ergibt sich Δs=2,861 m.
Also:
Von h1=115m bis h1-Seilänge=27,873 m findet der freie Fall statt
auf der folgenden Strecke Δs=2,861 m nimmt die Federkraft des Seils einen Wert an, der die Beschleunigung umkehrt. Hier errechnet sich eine Höhe von 25,012 m. In der Aufgabe werden hier 25 m angegben.
Die potentielle Energie bei h1 ist hier bei h2 umgewandelt in aktuelle potentielle Energie, Federenergie und kinetische Energie. Der Wert der kinetischen Energie kann aus den bekannten anderen Energien berechnet werden. Das kann nach Geschwindigkeit umgestellt werden. Ich komme auf 41,683 m/s.
Die Genauigkeit habe ich übertrieben groß dargestellt um die kleinen Differenzen zu zeigen. Für g habe ich 9,81 m/s2 angesetzt.
Insgesamt eine knifflige Aufgabe.