Schön der Reihe nach:
$$ F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 \cdot q_2}{r^2}$$
$$ \varepsilon_0 = 8,854 \cdot 10^{-12} \frac {A\,s} {V\,m} $$
$$ F = \frac{1}{4\pi\varepsilon_0} \frac{(1,602 · 10^{-19}As )^2}{(2 · 10^{-15}m)^2}$$
$$ F = \frac{1}{4\pi\varepsilon_0} \left(\frac{1,602 · 10^{-19}As }{2 · 10^{-15}m}\right)^2$$
$$ F = \frac{1}{4\pi\varepsilon_0} \left(\frac{0,801 · 10^{-4}As }{m}\right)^2$$
$$ F = \frac{1}{4\pi\varepsilon_0} \left(\frac{0,641601 · 10^{-8} }{1}\right)\left(\frac{As }{m}\right)^2$$
$$ F = \frac{1}{4\pi \cdot 8,854 \cdot 10^{-12} \frac {A\,s} {V\,m}} \left(\frac{0,641601 · 10^{-8} }{1}\right)\left(\frac{As }{m}\right)^2$$
$$ F = \frac{{V\,m}}{\pi \cdot 8,854 \cdot 10^{-12} {A\,s} } \left(\frac{0,641601 · 10^{-8} }{4}\right)\left(\frac{As }{m}\right)^2$$
$$ F = \frac{0,16040025· 10^{-8}}{\pi \cdot 8,854 \cdot 10^{-12} } \left(\frac{{V\,m} }{{A\,s}}\right)\left(\frac{As }{m}\right)^2$$
$$ F = \frac{0,16040025· 10^{4}}{\pi \cdot 8,854 } \left(\frac{VAs }{m}\right)$$