Antwort mit KI erzeugt
Um die Frage zu beantworten, werden wir die ideale Gasgleichung \(pV = nRT\) verwenden, sowie das Gesetz von Boyle-Mariotte, da die Temperatur und die Stoffmenge des Gases sich nicht ändern. Der Druck \(p\) und das Volumen \(V\) sind umgekehrt proportional zueinander, solange Temperatur und Stoffmenge konstant bleiben.
Gegebene Werte:
- Anfangsdruck \(p_1 = 100 \, \text{bar}\)
- Anfangsvolumen \(V_1 = 20,0 \, \text{l}\)
- Enddruck bei der ersten Berechnung \(p_2 = 1,00 \, \text{bar}\)
- Enddruck bei der zweiten Berechnung \(p_3 = 25 \, \text{bar}\)
Gesucht:
- Volumen \(V_2\) nach der Druckreduktion auf 1,00 bar
- Volumen \(V_3\) nach der Druckreduktion auf 25 bar
- Das ausgeströmte Volumen bei Reduktion auf 25 bar
Berechnungen:
1.
Volumen nach der Druckreduktion auf 1,00 bar
Das Gesetz von Boyle-Mariotte lautet:
\(p_1V_1 = p_2V_2\)
Wir setzen die Werte ein, um \(V_2\) zu berechnen mit \(p_2 = 1,00 \, \text{bar}\):
\(100 \, \text{bar} \times 20,0 \, \text{l} = 1,00 \, \text{bar} \times V_2\)
\(V_2 = \frac{100 \, \text{bar} \times 20,0 \, \text{l}}{1,00 \, \text{bar}}\)
\(V_2 = 2000 \, \text{l}\)
2.
Volumen nach der Druckreduktion auf 25 bar
Nun berechnen wir \(V_3\) auf ähnliche Weise mit \(p_3 = 25 \, \text{bar}\):
\(100 \, \text{bar} \times 20,0 \, \text{l} = 25 \, \text{bar} \times V_3\)
Umformen ergibt:
\(V_3 = \frac{100 \, \text{bar} \times 20,0 \, \text{l}}{25 \, \text{bar}}\)
\(V_3 = 80,0 \, \text{l}\)
Berechnung des ausgeströmten Volumens bei einer Druckreduktion auf 25 bar:
Da zum Finden des ausströmenden Volumens der Anfangszustand \(V_1\) und der Zustand nach der Druckreduktion \(V_3\) bekannt sind, können wir folgende Differenz berechnen:
\(V_{aus} = V_3 - V_1\)
\(V_{aus} = 80,0 \, \text{l} - 20,0 \, \text{l}\)
\(V_{aus} = 60,0 \, \text{l}\)
Fazit:
Wenn der Druck in der Pressluftflasche von 100 bar auf 25 bar sinkt, fließen insgesamt 60,0 Liter Luft aus.