Aufgabe:
Ein Kind hält einen kleinen Ball aus dem Fenster in der \( 6 . \) Etage eines Hauses (Hohe \( h_{2}=25,0 \mathrm{~m} \) über dem Boden und lässt ihn zum Zeitpunkt \( t=0 \) los, sodass er nach unten fällt. Ein zweites Kind steht genau darunter auf dem Boden und hält eine , Spielzeugwaffe" genau senkrecht nach oben (Mündung in der Höhe \( h_{0}=2,00 \mathrm{~m} \) über dem Boden). Zu welchem Zeitpunkt muss ein Projektil die Mündung verlassen, damit es den Ball genau in der Höhe \( h_{1}=12,0 \mathrm{~m} \) über dem Boden trifft? Mündungsgeschwindigkeit: \( v_{0}=19,0 \mathrm{~m} / \mathrm{~s} \). Ball und Projektil spüren die Erdbeschleunigung \( |\vec{g}|=9,81 \mathrm{~m} / \mathrm{~s}^{2} ; \) Luftwiderstand sei vernachlässigbar.
Problem/Ansatz:
Ich habe erstmal ausgerechnet, wann der Ball der von oben fällt bei 12m ist. Da habe ich dann 1,6s und -1,6s rausbekommen. Dann habe ich ausgerechnet wie lange das projektil braucht um von 2m auf 12m höhe zukommen. Dort habe ich 1,3s und -1,3s raus. Mir erschließt sich aber nicht inwiefern die jeweiligen negativen Ergebnisse zur Aufgabe passen, bzw. was sie bedeuten. Wäre nett wenn mir das jemand erklären könnte. Vielen Dank im Voraus!