0 Daumen
1,5k Aufrufe

Auf einem Wagen ist eine Federkanone montiert. Wagen und Kanone haben die Masse mW = 0,21 kg. Die Kanone kann ein Geschoss in horizontaler Richtung in der Rollrichtung des Wagens abschießen. Die Geschossmasse beträgt mG =0,05 kg.

Der Wagen hat zunächst eine Geschwindigkeit von vW0 = 0,3 m/s. Das Geschoss wird in Fahrtrichtung abgeschossen. Welche Geschwindigkeiten vW2 und vG2 haben Wagen und Geschoss nach dem Abschuss?


Nach dem Abschuss haben Wagen und Geschoss zusammen eine Geschwindigkeit von 10m/s. Dabei ist die Anfangsgeschwindigkeit aber nicht mit eingerechnet. vWG = vW + vG. Also diese 10m/s sind die Summe der Geschwindigkeit des Wagens und der des Geschosses.

Avatar von

Betragsmäßig ist die Summe 10, denn es könnte sein, dass nach abschuss des geschosses der wagen sich zum geschoss entgegengesetzt bewegt

Ansonsten gilt nach Impulssatz:

Vor dem Abschuss: Wagen und Geschoss haben die selbe Geschwindigkeit

Nach dem Abschluss: Wagen hat die Geschwindigkeit vw und das Geschoss die Geschwindigkeit vg

-> Impuls vor dem Abschuss = Impuls nach dem Abschuss

= > mWagen mit Geschoss * vWagen mit Geschoss = mWagen*vwagen + mGeschoss*vGeschoss

usw.

Schade, dass keine Angaben zur Feder gemacht wurden, so dass man den Energierhaltungssatz nicht bemühen kann.

1 Antwort

0 Daumen

Antwort mit KI erzeugt

Lösung:

Zur Lösung dieser Aufgabe nutzen wir den Impulserhaltungssatz. Der Impulserhaltungssatz besagt, dass in einem abgeschlossenen System der Gesamtimpuls vor und nach einem Ereignis konstant bleibt, solange keine externen Kräfte einwirken.

Sei \(m_{W} = 0,21 \, \text{kg}\) die Masse des Wagens, \(m_{G} = 0,05 \, \text{kg}\) die Masse des Geschosses und \(v_{W0} = 0,3 \, \text{m/s}\) die Anfangsgeschwindigkeit des Wagens. Die Geschwindigkeiten des Wagens und des Geschosses nach dem Abschuss bezeichnen wir mit \(v_{W2}\) und \(v_{G2}\) respectively.

Laut der Aufgabenstellung ergibt die Addition der Geschwindigkeiten von Wagen und Geschoss nach dem Abschuss 10 m/s, aber nicht inklusive der Anfangsgeschwindigkeit. Diese Information muss in die Berechnung mit einfließen.

Zunächst berechnen wir den Gesamtimpuls vor dem Abschuss. Da anfangs nur der Wagen in Bewegung ist, gilt:

\( p_{\text{vorher}} = m_{W} \cdot v_{W0} \)

\( p_{\text{vorher}} = 0,21 \, \text{kg} \cdot 0,3 \, \text{m/s} = 0,063 \, \text{kg} \cdot \text{m/s} \)

Nach dem Abschuss gilt für den Gesamtimpuls:

\( p_{\text{nachher}} = m_{W} \cdot v_{W2} + m_{G} \cdot v_{G2} \)

Da der Gesamtimpuls erhalten bleibt, setzen wir \(p_{\text{vorher}}\) und \(p_{\text{nachher}}\) gleich:

\( p_{\text{vorher}} = p_{\text{nachher}} \)

\( 0,063 = m_{W} \cdot v_{W2} + m_{G} \cdot v_{G2} \)

Zusätzlich wissen wir, dass \(v_{W2} + v_{G2} = 10 \, \text{m/s} + v_{W0} \), da \(v_{W0}\) zur neuen Gesamtgeschwindigkeit hinzugerechnet werden muss:

\( v_{W2} + v_{G2} = 10,3 \, \text{m/s} \)

Mit zwei Gleichungen und zwei Unbekannten können wir \(v_{W2}\) und \(v_{G2}\) durch Einsetzen oder Gleichsetzen berechnen. Jedoch ist zu bemerken, dass die gegebene Information im Konflikt zu stehen scheint, da die Anfangsaufgabe impliziert, dass 10 m/s die Summe der neu erreichten Geschwindigkeiten ohne die Anfangsgeschwindigkeit ist, während im weiteren Text hervorgeht, dass diese als Summe der Geschwindigkeiten nach dem Abschuss betrachtet wird. Daher wird hier eine Anpassung vorgenommen, um die scheinbare Diskrepanz aufzuklären. Ist mit der Annahme, dass die Summe der Geschwindigkeiten nach dem Abschuss tatsächlich die Geschwindigkeit plus der Anfangsgeschwindigkeit ist, könnte sich ein Fehler eingeschlichen haben. Die korrekte Interpretation scheint zu sein, dass die "neuen" Geschwindigkeiten von Wagen und Geschoss in Summe 10 m/s ergeben, ohne die Anfangsgeschwindigkeit mit einzubeziehen. Jedoch führt dies zur weiteren Verwirrung über die Anfangsangabe.

Um mit der gegebenen Aufgabenstellung fortzufahren, ohne Widersprüche, wäre eine genauere Klärung oder Umformulierung erforderlich. Basierend auf der Interpretation, dass \(v_{W2} + v_{G2}\) rein die Geschwindigkeiten nach dem Abschuss (also 10 m/s) darstellt, ließe sich eine Annahme treffen, dass die Impulserhaltung ohne Einbeziehung der Anfangsgeschwindigkeit von \(v_{W0}\) zu betrachten wäre, was jedoch gegen die standardphysikalische Interpretation verstößt.
Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community